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The combined effects of radiation pressure and gravitational force can be used to
stabilize a moving mirror to a high degree of accuracy. A noise analysis shows that,
under typical conditions, a three-mirror configuration canlead to a mirror confinement
within about 1.5 nm, for incident laser powers of 0.5 W.
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1. INTRODUCTION

Consider a plane Fabry—Perot interferometer in which one mirror is fixed and the other is very
light, and suspended to swing as a pendulum. The light pressure produced by the intensity
W, in the cavity drives it towards equilibrium with the gravitational and inertial forces. At
steady state, the mirror displacement x from its rest position in the absence of light is then
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proportional to W,,. Since x determines the interferometer spacing, there is a one-to-one
correspondence between this situation and usual optical bistability in the presence of a Kerr
medium, except that we now have a change of the physical cavity length instead of its optical
length. In a previous paper (Dorsel ¢t al. 1983) we showed experimentally that this system can
display a bistable response (radiation-pressure optical bistability). In addition, we showed that
when the incident light intensity is sufficient, the movable mirror becomes extremely stable,
and the motion at the mechanical resonance is suppressed. We call this behaviour ‘mirror
confinement’. In view of its potential applications, efforts to analyse this control mechanism,
and to exploit it further have proceeded. In particular, we found that a three-mirror device
(the movable mirror is suspended between two fixed mirrors) is capable of far superior
confinement and stability (McCullen et al. 1984). The improved stability is due to the fact that
radiation pressure now acts on both sides of the movable mirror, the greater force coming from

A
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the side closest to resonance. By suitable choice of the round-trip cavity phase shift, these
competing forces can be used to produce a high level of mirror confinement and stability. In
§2 a review of the two-mirror system is given, and in §3 the three-mirror arrangement is
discussed. A white-noise analysis of the systems is presented in §4. In §5 we discuss the effects
of ground noise, which are relevant for applications, for example as a narrow-band seismometer.

SOCIETY

Finally, §6 is a summary and conclusion.

THE ROYAL

2. TWO-MIRROR RESONATOR

The interferometer constructed for our experimental studies has been described elsewhere
(Dorsel et al. 1983). Bistability was obtained by slowly varying the input power across the
bistable region, from feeble power to high power, and back. Scanning times ranged from 2 to
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5 min, times long compared with the damping time of the mirror.
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342 A.DORSEL AND OTHERS

In addition to optical bistability, we also observed an effect we call mirror confinement,
whereby for sufficient fixed input power the movable mirror became extremely stable against
mechanically resonant oscillations at the pendulum frequency. It was found that the effective
resonant frequency £, for the system could become significantly different from the mechanical
frequency £ of the pendulum for input power sufficiently beyond the bistability threshold.

Mirror confinement can be simply understood in terms of the potential describing the motion
of the moving mirror. This potential can be derived from the dynamical equation for the moving
mirror

i+yi+x=Plx), (1)

where ¥ measures the displacement of the mirror from its rest position in the absence of light,
v is the pendulum damping constant, and P(x) is the radiation pressure force per unit mass.
For scaling convenience, x is measured in units of half-wavelengths of the incident light
(assumed monochromatic) and time is measured in units of the inverse of the pendulum
frequency £. For the two-mirror system P(x) is given by

K,

B = 1T F sint 1p?

(2)
where ¢ = 2nx—¢@,, ¢, being the detuning of the resonator in the absence of light. The
constants K, and F, are given by

4R (1—-R) W 44/ (RR")

b= VRR e = 0=y kR (3)

where R and R’ are the intensity reflectivities of the fixed and movable mirrors, respectively,

W is the input intensity, and m is the movable mirror mass.
The potential corresponding to the dynamical equation (1) (we set y = 0) is given by

V) = b [ “arp) @

and is plotted in figure 1a for R = 0.99, R’ = 0.95, K, = 109 (we use these values for examples
throughout). This value for K, corresponds to an applied light power of 0.5 W, and 2 = 7 s7,
with a mirror mass 60 mg. The potential minima correspond to possible stable states of the
system. It is clear that if the mirror is captured into one of these wells, it thereafter responds
significantly only to driving forces whose frequencies are near the oscillation frequency in the
well. As the input power, and thus the internal power, increases, the depth and curvature of
the well increase, and the effective resonant frequency of the system departs from the pendulum
frequency. For sufficient input powers the system can therefore be made extremely stable
against mechanically resonant oscillations.

3. THREE-MIRROR SYSTEM

The chief drawback presented by the two-mirror system in confining the mirror is that the
radiation pressure force is exerted only in one direction. Thus on one side of the equilibrium
point the force changes rapidly with position (on a scale determined by the cavity finesse),
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2 R (a)

potential (arbitrary zero)

potential (arbitrary zero)
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displacement (arbitrary zero) displacement (arbitrary zero)

Ficure 1. Potentials for (@) the two-mirror case; (4) the three-mirror case with one-sided illumination; (c) the
three-mirror case with symmetric illumination, for R = 0.99, R’ = 0.95, K, = 109.

whereas on the other side the restoring force comes from the usual pendulum forces, and varies
much more slowly with position. The situation can be significantly improved by suspending
the movable mirror inside a fixed tuned Fabry-Perot cavity, thereby creating two coupled
interferometers. The radiation pressure force can now be in either direction, depending upon
which of the cavities is closer to resonance, with a concomitant sharpening of its positional
dependence. By appropriately tuning the main cavity, reversal of the direction of the radiation
pressure occurs when the overall transmission is large, providing maximal radiation forces to
confine the pendulum.
Equation (1) remains valid for the three-mirror system, but with

o Ky f(1+R) =2 cos (g—,)} -
* T T+ E{f cos (6—1g,) — cos 19, HJR cos (¢—iy) —cos 1)

where we have taken the laser field to be incident on one side of the fixed Fabry—Perot only.
In this equation ¢, is the (round-trip) phase detuning of the main cavity, f = 4/ (R’/R), and

F; and K, are given by
4R 1 (1—fRY?
F3~(1_R)2> K3_f(1—R) KZ' (6)

The denominator in (5) has a sharp minimum, similar to the denominator in (2). The value
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344 A.DORSEL AND OTHERS

for ¢ at which it minimizes, however, is sin (¢ —3¢,) = 0, rather than sin }¢ = 0. The value
for ¢, that makes this minimum the smallest is given by the equation

cos 3¢, = s f(1+R). (7)

With this choice of ¢,, the numerator of (4) passes through zero at the same value for ¢ for
which the denominator minimizes. The force thus changes sign in a region of maximum
transmission. Roughly speaking, this causes the equilibrium points of the mirror to occur at
nodes of the standing wave of the light resonant in the main cavity.

Potential curves for the three-mirror system are plotted in figure 14,¢. Curve 1¢ is obtained
with equal intensities incident on both sides of the fixed Fabry—Perot and assuming that the
light beams are mutually incoherent; the force then consists of the sum of two terms, each of
the form of (5):

P, = 2K, sin }¢) sin ($—1,)/ D, (8)

where D is the denominator in (5).

The curves for the three-mirror system show potential wells around equilibrium points of
the movable mirror that are much narrower than their two-mirror counterparts. The examples
in figure 1 are for the choice of cavity phase given by (7), which results in the narrowest wells.
With ¢, greater than this, the wells become deeper and the spacing between the steep walls
increases, making the potential more or less flat on the bottom. For a given choice of ¢,, the
depth of the well depends upon the intensity of the incident light. The shape, however, depends
on the cavity parameters. For the case shown in figure 1, the width at half maximum is about
0.017 of the incident wavelength, or 8.5 nm with 500 nm incident light. The effective resonant
frequencies for the three-mirror system can be estimated by a linearized analysis (see §5) of
the dynamics represented in (1).

4. WHITE-NOISE ANALYSIS

The effect of white noise on (1) can be investigated by solving the corresponding

oW 0o 0 0 0?

where #"(x, u, ) is the probability density in position—velocity space and « is the movable mirror

Fokker-Planck equation

velocity in units of ¥, = 1AQ2. I = y(uy,/u,)? is the usual diffusion coefficient.
In the steady state (0% /0t = 0) the solution of this equation is given by Risken (1984)

W (x,u) = Nexp [ — (up/uy)* {u* + V(x)}], 9)

where N is a normalization constant.
Integrating over velocities yields the probability density @(x) of finding the particle between
x and x+dx. We find

[oe]

Q) = exp = (u/u)* V)| [ dy exp (= (apfu)? V1011, (10)

which has the form of a partition function. We are interested in the confinement of the movable
mirror when it is initially prepared in one of the potential minima. If this well corresponds to
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OPTICAL RESONATORS FROM RADIATION PRESSURE 345

essentially the same potential value as one of its close neighbours, then, according to (10), the
steady-state probabilities for the mirror to be in either well will be equal. This arises because
in the limit 00, tunnelling produces the distribution (10). However, on more realistic time
scales (say hours) tunnelling will be negligible if @ (x) for the initial well is narrow compared
with the well width. We therefore consider individual wells and treat the remainder of the
potential curve as that of the gravitational potential. In figure 2 we have plotted @(x) as a

b

1.2 16 20 24 02 0.3 04
displacement

Ficure 2. Probability density Q(x) plotted against x and u,,/u, together with the corresponding contour plot for
the two-mirror (a,b) and three-mirror (¢, d) systems. These results correspond to the deepest potential wells
in figure 14, b.

function of x and (u,/«,), along with a corresponding contour plot, for both the two-mirror
(figure 24, b) and three-mirror (figure 2¢, d) cases. In each case we choose the deepest potential
well (see figure 1a,b). Figure 2a shows that the stability of the two-mirror system to noise is
somewhat limited owing to the slowly varying gravitational potential. This feature leads to fast
tunnelling from the initial well to the neighbouring well on the slow side of the potential for
relatively low values of u,/u,. In contrast the three-mirror system shows far superior stability
to noise. Figure 2¢ shows clearly that the probability density remains essentially constant in
width, right up to a critical point at which the profile broadens abruptly and stability is lost.
This feature is more clearly displayed in figure 2d, where the contours diverge abruptly at
Uy, /1y & 0.6. For the case of two-way driving of the three-mirror system, the results are similar
to those in figure 2¢, d, except that the curves are more symmetrical.

5. EFFECTS OF GROUND NOISE

The white-noise analysis of the previous section, though useful for comparing the relative
stability and confinement properties of the various systems, is inappropriate to the description
of ground noise, which is the main noise source as far as applications are concerned. To evaluate
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346 A.DORSEL AND OTHERS

its effects, we use a linearized form of (1), in which P(x) is expanded to first order in x around
an equilibrium point x, = 0. In the presence of ground noise source, G(f), this equation becomes
(x is now the displacement from the chosen equilibrium point)

E+yi+Q2%x = G(8), (11)
where the effective frequency £, is found from
QF = 1+ (0P/0x),,, (12)

which is around Q2% ~ 1.147 x 10° W for the parameters considered. This harmonic oscillator
approximation is clearly most appropriate for the three-mirror systems (see figure 15,¢). If
two-way pumping occurs, £22 becomes

o & AV L1+ R
e ~ fT2TI

w. (13)
Assuming that the ground noise causes a translational motion z(¢) of the whole system through
stationary air, the noise term in (11) can be written

G(t) = —yi—=:. (14)

Fourier transforming (11), for a unit impulse displacement z(f) = §(¢) yields the frequency
transfer function H(w) (Bendat & Piersol 1966),

Hw) = (0®*—iyw)/ (22 —w?+iyw). (15)
The spectral density S, () is then given by
Sp(w) = [H(w)|*S,(w), (16)

where §, is the spectral density of the ground noise, and the mean squared displacement of
the moving mirror by

(a2 = sz(w) dw. (17)

Ground noise is characterized by a spectral density of the general form S, (w) & C/w*, C being
a constant dependent on location. For the Munich area C & 6 x 10711 /A2Q3 (Billing et al. 1983),
the A and €2 dependence arising from scaling. For A = 500 nm we obtain

250 (“u 1 w*+y*0?
2 ~ — 18
G~ f w4{(9§——w2)2+y2w2}dw’ (18)

We

where w,, is taken as a lower bound of the earth vibration frequencies, which has a value ca.
1 min~'. In the scaled units we are using this gives w, & 0.1/£. The upper value, v, is taken
as a few times Q.4, say 10, then w, & 10%4/C.

These values yield an x,,,¢ displacement of the moving mirror of x,,,; & 1.5 nm, for y = 0.5.
With higher values of damping, x,,,¢ slowly increases, because the effective resonator  is
decreased. This shows, however, that confinement to a small range of motion within the confines
of the potential well is possible.
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6. SUMMARY AND CONCLUSIONS

Our results show that control of the position of a movable mirror to within a range of a few
tenths of a nanometre by using radiation pressure, should be readily achievable. This opens
the way to a number of applications, since such a system represents a very sensitive,
narrow-banded tunable transducer between mechanical and optical signals. Specifically, its
frequency can be tuned by varying the input laser intensity and its bandwidth by changing
the phase detuning, ¢,, of the main cavity. For the optimal detuning ¢, given by (7), a
bandwidth of a few hertz can readily be achieved. Since the stabilization of the mirror is under
optimum conditions about a maximum in transmission, a second, weak laser slightly detuned
from the stabilizing laser should be used for detection.

Possiblebasic physical applicationsinclude acousto-optical studies, very accurate photoelectric
effect measurements, and atomic and molecular beam diagnostics. On the more applied side,
these systems can be developed into narrow-banded seismometers. An even more intriguing
idea is the geometrical stabilization of a very large thin-pellicle space telescope (Labeyrie 1979).

This work was carried out partly in the framework of an operation launched by the
Commission of the European Communities under the experimental phase of the European
Community Stimulation Action (1983-85).
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